She’s got a radical approach for the age of superbugs: Don’t fight infections.

She’s got a radical approach for the age of superbugs: Don’t fight infections. Learn to live with them
May 18 2017

LA JOLLA, Calif. — As her father lay dying of sepsis, Janelle Ayres spent nine agonizing days at his bedside. When he didn’t beat the virulent bloodstream infection, she grieved. And then she got frustrated. She knew there had to be a better way to help patients like her dad.

In fact, she was working on one in her lab.

Ayres, a hard-charging physiologist who has unapologetically decorated her lab with bright touches of hot pink, is intent on upending our most fundamental understanding of how the human body fights disease.

Scientists have focused for decades on the how the immune system battles pathogens. Ayres believes other elements of our physiology are at least as important — so she’s hunting for the beneficial bacteria that seem to help some patients maintain a healthy appetite and repair damaged tissue even during bouts of serious disease.

If she can find them — and she’s already begun to do so — she believes she can develop drugs that will boost those qualities in patients who lack them and help keep people alive through battles with sepsis, malaria, cholera, and a host of other diseases.

Her approach, in a nutshell: Stop worrying so much about fighting infections. Instead, help the body tolerate them.

And no, she’s not spouting some New Age California mumbo jumbo about letting the body heal itself. An associate professor at the Salk Institute in the heart of San Diego’s booming biotech beach, Ayres is harnessing all manner of high-tech tools from the fields of microbiomics, genetics, and immunology — and looking to a menagerie of animals — to sort out why some individuals tolerate infection so much better than others.

It’s work that’s desperately needed, Ayres said, as it becomes ever more clear that our standard approach to fighting infection using antibiotics and antivirals is hopelessly inadequate. The drugs don’t work for all diseases, they kill off good bacteria along with bad — and their wanton use is contributing to the rise of antibiotic resistant bacteria, or “superbugs,” which terrify disease experts because there are few ways to stop them.

Ayres’s father, Robert Lamberton, developed sepsis after a routine gallbladder surgery in 2015. Battling to fight the infection in the ICU, the hospital used an arsenal of antibiotics.

None worked.

“We’re focused only on making new antibiotics,” Ayres said. “And that’s an arms race that we’re never going to win.”

Ayres’s journey started with thousands of sick, mutant flies. It was about 10 years ago, in biologist David Schneider’s lab at Stanford, where Ayres was a grad student. She infected more than 10,000 flies, carrying various genetic mutations, with listeria. “I injured my hand because I had to inject so many flies,” she recalled.

While many immunologists would look for very specific immune responses, Ayres asked a simpler, but perhaps more important, question: Which flies survived?

By comparing the mutants that died quickly against the survivors, she found specific sets of genes that played roles in preventing, curbing, and even repairing damage from the listeria infection — regardless of the level of bacteria in the flies’ bodies.



Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s